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Abstract 
Copper plasma with hyperthermal directed velocity (8.8 eV) but very low temperature (0.6 eV) 
has been obtained using self-sputtering far above the runaway threshold.  Ion energy distribution 
functions (IEDFs) were simultaneously measured at 34 locations.  The IEDFs show the tail of the 
Thompson distribution near the magnetron target.  They transform to shifted Maxwellians with 
the ions being accelerated and cooled.  We deduce the existence of a highly asymmetric, 
pressure-driven potential hump which acts as a controlling “watershed” between the ion return 
flux and the expanding plasma.   
 

 
 
High power impulse magnetron sputtering (HIPIMS) has emerged as an innovation to 

physical vapor deposition.  It combines traditional magnetron sputtering with pulsed power 
technology resulting in significant ionization of sputtered atoms.  This leads to film growth with 
self-ion assistance, an elegant way to accomplish film densification, improvement of adhesion, 
and where applicable, control of texture, hardness, elastic modulus, refractive index, and other 
film properties, and thus has tremendous potential to numerous applications.1   

The HIPIMS plasma is often dominated by ions of the target material, and hence self-
sputtering is an important component of HIPIMS.  We speak of sustained self-sputtering (SSS) 
when sputtering by ions of the target material is sufficient such that the sputtered atoms can be 
the process “gas”.  

SSS requires that the self-sputtering parameter SS   equals unity, where   is the 

probability for a sputtered atom to become ionized,   is the probability that the newly formed 

ion returns to the target surface, and  SS iE  is the self-sputtering yield.  The condition 1   

implies self-sputtering runaway, which leads to a very significant increase (“jump”) in discharge 
current as soon as this condition is reached2.  After a phase of runaway, the system can reach 
steady-state, , at a very high level of discharge current.   1 

A large fraction (likely > 50%) of newly formed ions needs to return to the target in order 
to sustain the discharge, yet a very large ion current to a substrate was also observed.3  This 
suggests the existence of a potential maximum in the dense plasma ionization zone: ions 
produced on the target side of the potential maximum have a high likelihood to return to the 
target, while ions on the substrate side are likely to escape from the magnetron.  While most of 
the anode-cathode potential drop occurs in a thin sheath adjacent to the target ( ), an 
electric field also exists in the magnetic pre-sheath, which accelerates ions to the sheath edge.4  
However, not much is known about the remaining potential distribution for magnetron plasmas, 
and in particular for HIPIMS.   
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Brenning and coworkers5 developed a model of the bulk plasma region of DC and 
HIPIMS discharges where the potential distribution can be deduced from the electron current 
density whose surface integral over the discharge cross section must be approximately equal to 
the discharge current.  The generalized Ohm’s law can be split in one part describing the electron 
current density driven by the local electron pressure gradient, ep

ej
 ,and another part describing 

the current driven by the local electric field, .  Lundin et al.6 proposed that the modified two-

stream instability (MTSI) is responsible for anomalous current transport, which is driven by the 
relative drift of electrons and ions, u = , in the presence of a magnetic field component 

perpendicular to .  The azimuthal electron current of the magnetron7 provides the right 

conditions for the MTSI, leading to perturbations and growing oscillations in the lower hybrid 
frequency range.6 

E
ej

e- urel iu

relu

Under the high plasma density conditions of HIPIMS, the condition ep E
e ej j   can be 

fulfilled, which enables the existence of the suspected potential hump in the ionization zone.  
Such potential hump must be very asymmetric since the potential gradient towards the target is 
extremely steep, while only a few volts over a relatively large distance are needed to remove ions 
from the ionization zone and accelerate them towards the substrate.  DC magnetron discharges 
do not have a strong electron pressure gradient, and, consistently, no potential hump has been 
found.4  

The potential distribution close to a target is very difficult to measure in a direct manner.  
Therefore, we deduce the potential distribution by measuring a field of ion energy distribution 
functions (IEDFs).  We resort to SSS in the “gasless” HIPIMS mode because scattering of ions 
by the background gas could destroy the information we seek.  Gasless HIPIMS has been 
demonstrated utilizing a short (20 µs) vacuum arc pulse plasma to trigger the onset of SSS.8  
HIPIMS allows us to go far above the self-sputtering runaway threshold in a very controlled 
manner.3   

A set of 36 probes were mounted at four different distances from the center of the target 
and under angles from 0° to 80° in steps of 10°.  The probes are used as Langmuir probes in ion 
saturation mode and as time-of-flight detectors.  The IEDFs were derived from measurements of 
the velocity distribution functions using a time-of-flight principle previously demonstrated for 
flowing vacuum arc plasmas.9  Rapid termination of plasma production leads to a more gradual 
decay of plasma density at a defined distance from the plasma generator.  The decay curve 
contains information on the ion velocity distribution function using the Laplace transformation9 

    1idI t t
f v c

dt


  , (1) 

provided the termination was sufficiently rapid, satisfying  
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 , (2) 

where disI  is the discharge current, iI  is the ion current at the collecting probe,  is the time of 

discharge termination, and  is a constant.  In contrast to work with conventional energy 
analyzers, no detailed knowledge of the plasma potential is needed.  One has only to make sure 
that the probe – here used as a time of flight detector – is sufficiently negative with respect to the 
plasma potential to ensure ion saturation. 
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The gasless HIPIMS configuration was setup with a planar, nominally balanced 
magnetron with a 2” (5 cm) diameter target made from oxygen-free high-conductivity (OFHC) 
copper.  The magnetic induction at the center of the target surface was 65 mT; the visible circular 
racetrack had a diameter of 26 mm.  The discharge power was supplied by a SPIK2000A pulse 
unit (Melec) charged by a Pinnacle supply (Advanced Energy).  The potential applied to the 
target was -1000 V with a pulse duration of 275 µs and a pulse repetition rate of 10 pulses per 
second.  The magnetron discharge was initiated by a short (20 µs) copper vacuum arc of 200 A, 
with the copper plasma flooding the target surface.  The process was conducted at 1 x 10-4 Pa, 
the base pressure of the cryogenically pumped 200 liter chamber.   

A 40-channel oscilloscope was used to simultaneously record all relevant information (NI 
PXI-1045 chassis with five PXI-5105 8-channel digitizer cards, sampling rate 60 MS/second per 
channel with 12 bit resolution, operated under custom NI LabVIEW software).  The data 
included arc current, magnetron current and voltage, and the currents of the 36 time-of-flight 
probes.  Unfortunately, the probes at 22 cm distance and 40°, and at 30 cm and 30°, developed a 
short at the feedthrough, thus their data were discarded.  The discharge current and voltage were 
monitored using a broad band current transformer (Pearson) and voltage divider (Tektronix).  
The probes were mounted on a common holding plate positioned parallel to the target axis and 
15 mm below the axis of symmetry to avoid possible shadowing of downstream probes by 
neighboring upstream probes.  Each probe was a disk of 6 mm diameter and 0.5 mm thickness; it 
was raised 1 mm above the mounting plate such that the probe itself was a shield that prevented 
shorting by condensing copper.  Each probe was individually biased up to −100 V with respect to 
ground (= anode potential of arc source and magnetron).  A schematic of the same probe set for 
an experiment in gas can be found in another paper.10   

Figure 1 shows the signals of the probes with the time zero assigned to the end of the 
discharge pulse.  The discharge had reached a steady-state as evident by the constant discharge 
current (not shown here).  The local plasma density in the steady-state can be determined from 

the ion saturation current satI  to the probe’s collecting area  using probeA  ,i sat probe i proben I A e u , 

where we used the ion thermal velocity  with the justification that most of the probe area is 

aligned parallel to the flow from the target.  With those assumptions we obtain a local ion density 
of  for the probe at 60 mm, 0°, and falling as 

,i probeu

18 35 10 m   1.65,0n z z i,steady-state

30 mm

.  The exponent 

is smaller than -2, which is consistent with the observation that the magnetron is not a point 
source for spherical expansion but rather “throws” sputtered material in a preferred direction, the 
target normal.  Extrapolation of the  fit back to 1.65z z   gives 1.4 x 1019 m-3, which is 
indicative of the very high densities above the runaway threshold.  The densities at the other 
probes are proportional to their currents as shown in Fig. 1.  

The decay curves of Fig. 1 were used to derive the ion velocity distribution functions 
which in turn were converted to the IEDFs shown in Fig. 2.  The initial ion distributions have 
their origin in the energy distribution of sputtered atoms.  Following the Sigmund-Thompson 
theory11-12 they can be approximated by 

  
 Thompson 3

SB

E
f E

E E



 (3) 

which has been included in Fig. 2 using the surface binding energy for copper, 
13.  The distribution  Cu 3.49 eVSBE  (3) has a peak at 2SBE  and falls with .  Data taken 2E
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at 6 cm from the target center show the characteristic 2E  tail but the peak region, with much 
slower ions, had already thermalized to a shifted Maxwellian distribution, 

  S-Maxwell exp dir

i

E E

T


dirE

argets

E
f E E

  
  

 
, (4) 

which is well known for streaming vacuum arc plasmas14.  Fitting of (4) to the data gives values 
for the ion temperature and directed energy,  and , from the width and shift of the 

distribution, respectively.  Since data are available for the various locations we can derive the 
evolution of the IEDF as ions move away from the ionization zone.  We see that the ions acquire 
an average kinetic energy of about 8.8 eV, while they cool down to a temperature of only 0.6 eV.  
To understand those values we need to consider pressure gradients and collisions.   

iT

The sputtered atoms will collide with neighboring atoms. The thermalization length is 
about 5 cm for copper atoms moving in 1 Pa of argon.15  In the self-sputtering regime 
investigated here, the “gas” moves away from the target, and thermalization occurs in a frame of 
reference moving with the “sputter wind”.16  The dense HIPIMPS plasma occupies a near-target 
zone that sputtered atoms have to pass before they could arrive at the substrate, and in doing so, 
there is an appreciable probability of ionization.  Given the arch formed by the magnetic field 
lines, the densest plasma zone is about dense race tz r   above the racetrack, where is the 

radius of the racetrack (13 mm for our magnetron), and  is the target thickness (5 mm).  We 

see that even the closest probes at 60 mm are far from the ionization zone.   

racer

targets

When an atom becomes ionized by electron impact, its kinetic energy remains practically 
unchanged due to the small mass of the electron. Thus it is expected that the IEDFs initially 
exhibit the features of a Thompson distribution.  Via ion-ion collisions, the distribution changes 
towards the equilibrium distribution, which is a Maxwellian.  The shifts measured in the 
laboratory frame of reference are due to the initial directed flux from the sputtering process and 
forces of pressure gradients and electric fields.  

The frequency of ion-ion momentum exchange collisions can be calculated using 
Spitzer’s formula  

    
  3 2
z1 2

i
ii

i i

n z
z C

m k T
, (5) 

where 4 3 2 2 54
0ln 12 1.3 10 (AsVm)C e       2  and we assumed single charge state; k is the 

Boltzmann constant, 0  is the permittivity of free space, and ln 10 
1

ii

 is the Coulomb 

logarithm.  We find that the average time between collisions ii    is in the sub-microsecond 

range in the dense plasma zone, increasing to tens of microseconds for the expanding plasma at z 
> 10 cm.  Therefore, slow ions are well thermalized by the time they arrive at the first set of 
probes (6 cm) while ions in the energetic tail of the distribution travel much further before being 
thermalized.  We can detect remnants of the Thompson distribution tail in the IEDFs at 30 cm.  
The main finding, however, is that the IEDFs exhibit a systematic shift to higher energies as the 
ions move away from the target.   

The concept of a pressure-driven establishment of a potential hump, which controls the 
current balance for HIPIMS discharges, requires that the hump adjusts appropriately if the power 
is changed.  Experiments with different HIPIMS voltage settings confirmed that the ion energy 
shift is approximately proportional to the discharge voltage above the runaway threshold.  
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Without further elaboration (for space reasons) we report that the hump increases by about 1 V 
for every 100 V above the self-sputtering runaway threshold, which is at about 530 V.   

We conclude that gasless self-sputtering, and specifically when operated in HIPIMS 
mode far above the runaway threshold, delivers flowing plasma with hyperthermal ion velocity 
(~ 9 eV) and very low ion temperature (0.6 eV).  The deduced potential hump appears to be a 
critical mechanism for the regulation of current balances and the concept may also be applicable 
to situations other than those investigated here.  
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Figure Captions 
Fig. 1  Ion saturation currents simultaneously measured by 34 probes (Cu target, -1000 V applied 
voltage, 275 µs pulse duration, 10 pulses per second).  Note that the time scale was kept the same 
but the amplitude scale was adjusted for best display. 
 
Fig. 2  Ion energy distribution functions in the steady-state phase of gasless sputtering of copper, 
as derived from the ion velocity distribution functions at the positions indicated.  The Thompson 
distribution of sputtered atoms and a best fit of shifted Maxwellian distribution functions are 
added. 
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